Classifying Relations via Long Short Term Memory Networks along Shortest Dependency Paths

نویسندگان

  • Yan Xu
  • Lili Mou
  • Ge Li
  • Yunchuan Chen
  • Hao Peng
  • Zhi Jin
چکیده

Relation classification is an important research arena in the field of natural language processing (NLP). In this paper, we present SDP-LSTM, a novel neural network to classify the relation of two entities in a sentence. Our neural architecture leverages the shortest dependency path (SDP) between two entities; multichannel recurrent neural networks, with long short term memory (LSTM) units, pick up heterogeneous information along the SDP. Our proposed model has several distinct features: (1) The shortest dependency paths retain most relevant information (to relation classification), while eliminating irrelevant words in the sentence. (2) The multichannel LSTM networks allow effective information integration from heterogeneous sources over the dependency paths. (3) A customized dropout strategy regularizes the neural network to alleviate overfitting. We test our model on the SemEval 2010 relation classification task, and achieve an F1-score of 83.7%, higher than competing methods in the literature.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classifying Relations via Long Short Term Memory Networks along Shortest Dependency Path

Relation classification is an important research arena in the field of natural language processing (NLP). In this paper, we present SDP-LSTM, a novel neural network to classify the relation of two entities in a sentence. Our neural architecture leverages the shortest dependency path (SDP) between two entities; multichannel recurrent neural networks, with long short term memory (LSTM) units, pic...

متن کامل

Automatic Open Knowledge Acquisition via Long Short-Term Memory Networks with Feedback Negative Sampling

Previous studies in Open Information Extraction (Open IE) are mainly based on extraction patterns. They manually define patterns or automatically learn them from a large corpus. However, these approaches are limited when grasping the context of a sentence, and they fail to capture implicit relations. In this paper, we address this problem with the following methods. First, we exploit long short...

متن کامل

Classifying Temporal Relations by Bidirectional LSTM over Dependency Paths

Temporal relation classification is becoming an active research field. Lots of methods have been proposed, while most of them focus on extracting features from external resources. Less attention has been paid to a significant advance in a closely related task: relation extraction. In this work, we borrow a state-of-the-art method in relation extraction by adopting bidirectional long short-term ...

متن کامل

Bidirectional Recurrent Convolutional Neural Network for Relation Classification

Relation classification is an important semantic processing task in the field of natural language processing (NLP). In this paper, we present a novel model BRCNN to classify the relation of two entities in a sentence. Some state-of-the-art systems concentrate on modeling the shortest dependency path (SDP) between two entities leveraging convolutional or recurrent neural networks. We further exp...

متن کامل

P7: The Roles of Long-Term Memory on the Organization of the Knowledge for Educators

Modern neuroscientific research help to solve the impotent challenge in curriculum design and teaching for enhancing students’ ability to organize information in a way that makes it efficient in response to an appropriate context such as problem solving and critical thinking via knowing about the mechanism of different type of memories especially long term memory. At first, we should to c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015